✎ Задать свой вопрос   *более 30 000 пользователей получили ответ на «Решим всё»

Задача 550 За­ду­ма­но не­сколь­ко целых чисел.

УСЛОВИЕ:

За­ду­ма­но не­сколь­ко целых чисел. Набор этих чисел и их все воз­мож­ные суммы (по 2, по 3 и т. д.) вы­пи­сы­ва­ют на доску в по­ряд­ке не­убы­ва­ния. На­при­мер, если за­ду­ма­ны числа 2, 3, 5, то на доске будет вы­пи­сан набор 2, 3, 5, 5, 7, 8, 10.

а) На доске вы­пи­сан набор -11, -7, -5, -4, -1, 2, 6. Какие числа были за­ду­ма­ны?
б) Для не­ко­то­рых раз­лич­ных за­ду­ман­ных чисел в на­бо­ре, вы­пи­сан­ном на доске, число 0 встре­ча­ет­ся ровно 4 раза. Какое наи­мень­шее ко­ли­че­ство чисел могло быть за­ду­ма­но?
в) Для не­ко­то­рых за­ду­ман­ных чисел на доске вы­пи­сан набор. Все­гда ли по этому на­бо­ру можно од­но­знач­но опре­де­лить за­ду­ман­ные числа?

РЕШЕНИЕ:

а) Если было за­ду­ма­но 4 числа или более, то на доске долж­но быть за­пи­са­но не менее 15 чисел. Если было за­ду­ма­но 2 числа или мень­ше, то на доске долж­но быть за­пи­са­но не более 3 чисел. Зна­чит, было за­ду­ма­но 3 числа. Если бы было за­ду­ма­но 2 по­ло­жи­тель­ных числа, то на доске было бы вы­пи­са­но не менее трёх по­ло­жи­тель­ных чисел. Зна­чит, по­ло­жи­тель­ное число одно, и это число — наи­боль­шее число в на­бо­ре, то есть 6. Наи­мень­шее число в на­бо­ре -11 яв­ля­ет­ся сум­мой двух от­ри­ца­тель­ных за­ду­ман­ных чисел. Из от­ри­ца­тель­ных вы­пи­сан­ных чисел толь­ко -7 и -4 дают в сумме -11. Зна­чит, были за­ду­ма­ны числа -7, -4 и 6.

б) Рас­смот­рим раз­лич­ные за­ду­ман­ные числа, среди ко­то­рых нет нуля. Пусть для этих чисел в на­бо­ре на доске ока­за­лось ровно k нулей. Если до­ба­вить к за­ду­ман­ным чис­лам нуль, то на доске ока­жет­ся ровно 2k + 1 нулей: k нулей, по­лу­ча­ю­щих­ся как суммы не­ну­ле­вых за­ду­ман­ных чисел, k нулей, по­лу­ча­ю­щих­ся как суммы не­ну­ле­вых за­ду­ман­ных чисел и за­ду­ман­но­го нуля, и за­ду­ман­ный нуль. Таким об­ра­зом, если среди за­ду­ман­ных чисел есть нуль, то в на­бо­ре на доске ока­жет­ся нечётное ко­ли­че­ство нулей.
Если на доске вы­пи­са­но ровно 4 нуля, то среди за­ду­ман­ных чисел нет нуля. Пусть за­ду­ма­но че­ты­ре или мень­ше не­ну­ле­вых числа. Нуль по­лу­ча­ет­ся тогда, когда сумма не­ко­то­ро­го ко­ли­че­ства по­ло­жи­тель­ных чисел равна по мо­ду­лю сумме не­ко­то­ро­го ко­ли­че­ства от­ри­ца­тель­ных чисел. Одно за­ду­ман­ное число даёт одну сумму; два раз­лич­ных за­ду­ман­ных числа од­но­го знака дают три раз­лич­ные суммы: три раз­лич­ных за­ду­ман­ных числа дают семь сумм, среди ко­то­рых не более двух (за­ду­ман­ное число, наи­боль­шее по мо­ду­лю, и сумма двух дру­гих за­ду­ман­ных чисел) сов­па­да­ют. Зна­чит, среди сумм по­ло­жи­тель­ных и от­ри­ца­тель­ных чисел сов­па­да­ют по мо­ду­лю не более трёх. Таким об­ра­зом, если было за­ду­ма­но не более четырёх раз­лич­ных не­ну­ле­вых чисел, то на доске ока­жет­ся не более трёх нулей.
Если были за­ду­ма­ны числа -2; -1; 1; 2; 3, то на доске ока­жет­ся ровно че­ты­ре нуля. Зна­чит, наи­мень­шее ко­ли­че­ство за­ду­ман­ных чисел — 5.

в) Нет, не все­гда. На­при­мер, для за­ду­ман­ных чисел -3, 1, 2 и -2, -1, 3 на доске будет вы­пи­сан один и тот же набор -3, -2, -1, 0, 1, 2, 3.

Вопрос к решению?
Нашли ошибку?

ОТВЕТ:

а) -7, -4, 6; б) 5; в) нет.

Добавил slava191, просмотры: ☺ 2977 ⌚ 01.02.2014. математика 10-11 класс

Решения пользователей

Увы, но свой вариант решения никто не написал... Будь первым!
Хочешь предложить свое решение? Войди и сделай это!

Написать комментарий

Последние решения
y'= ∫ dx/sqrt(1-x^(2))=arcsinx+C_(1)
y'(0)=3
3=arcsin0+C_(1) ⇒ C_(1)=3
y= ∫ (arcsin0+3)dx=x*arcsinx+sqrt(1-x^(2))+3x+C_(2)
y(0)=2
2=0*0+1+3*0+C_(2) ⇒ C_(2)=1
y(x)=x*arcsin x+sqrt(1-x^(2))+3x+1
y(1)=1*arcsin 1+sqrt(1-1^(2))+3+1=5,571 ≈ 5,57

✎ к задаче 51990
Условие:
xy''=y'
Решение:
Положим dy/dx=z, тогда данное уравнение запишется в виде
xdz/dx=z; или xdz=zdx; отсюда dz/z=dx/x , интегрируя ∫ dz/z= ∫ dx/x получаем
lnz=lnx+lnC1 или lnz=lnxC1, отсюда z=e^ln(xC1)=xC1 т,к z=y', то
Получаем общее решение исходного уравнения
dy/dx=xC1, отсюда dy=xC1dx или y= ∫ xC1dx=x^2/2*C1+C2
✎ к задаче 51991
Из прямоугольного треугольника SAO:
AO=4 ( катет против угла в 30 градусов равен половине гипотенузы)

Наклонные SA=SB=SC равны, значит равны и проекции AO=BO=CO

O- центр окружности, описанной около равнобедренного треугольника
АВС ( АВ=BC=6)

R=abc/4S_( Δ ABC);

АС=2х
BD=sqrt(6-x^2)

S_(Δ ABC)=(1/2)AC*BD=(1/2)*2x*sqrt(36-x^2)

4=6*6*(2x)/(4x*sqrt(36-x^2)) ⇒ 2*sqrt(36-x^2)=9;

Возводим в квадрат:


4*(36-x^2)=81

(2x)^2=63

2x=sqrt(63)

AC=2x=[b]sqrt(63)[/b]



✎ к задаче 51987
На (- ∞ ;-1) функция непрерывна, так как y=-x^2+2 непрерывна на (- ∞ ;+ ∞ )

На (-1;0) функция непрерывна, так как y=3x+2 непрерывна на (- ∞ ;+ ∞ )

На (0;+ ∞ ) функция непрерывна, так как y=2 непрерывна на (- ∞ ;+ ∞ )

Значит, надо исследовать непрерывность функции в точках х=-1 и х=0

х=0

Находим [green]предел слева:[/green]
lim_(x →-1 -0)f(x)=lim_(x →-1 -0)(-x^2+2)=-1+2=1

Находим [red]предел справа:[/red]
lim_(x → -1+0)f(x)=lim_(x → -1+0)(3x+2)=-1
предел слева ≠ пределу справа

Значит, не существует предела функции в точке х=-1

Определение непрерывности не выполняется

х=-1 - [i]точка разрыва первого рода [/i]

В точке существует [i]конечный[/i] скачок



х=0
Находим [green]предел слева:[/green]
lim_(x → -0)f(x)=lim_(x → -0)(3x+2)=2

Находим [red]предел справа[/red]:
lim_(x → +0)f(x)=lim_(x → +0)(2)=2

предел слева = пределу справа
Предел в точке x=1 существует и равен значению функции в этой точке


х=1 - [i]точка непрерывности[/i]



2.
|x+6|=-x-6, при x <-6

|x+6|=x+6, при x >-6


y=\left\{\begin{matrix} -1, x<-6\\1,x>-6 \end{matrix}\right.

Функция непрерывна на (- ∞ ;-6) и на (-6;+ ∞ )

В точке х=-6 функция имеет[b] разрыв первого рода
[/b]
предел слева ≠ пределу справа

Значит, не существует предела функции в точке х=-1

Определение непрерывности не выполняется


В точке существует [i]конечный[/i] скачок
(прикреплено изображение)
✎ к задаче 51988
(прикреплено изображение)
✎ к задаче 51982