Loading [MathJax]/extensions/tex2jax.js
Задать свой вопрос   *более 50 000 пользователей получили ответ на «Решим всё»

Задача 54947 Найдите все значения а, при каждом из...

Условие

Найдите все значения а, при каждом из которых уравнение a2 + 13|x| + 5 √4x2+9= 3a + 3|4x–3a| имеет хотя бы один корень

математика 10-11 класс 4106

Решение

[m]5\cdot \sqrt{4x^2+9}=-a^2+3a-13|x|+3|4x-3a|[/m]

Наименьшее значение при x=0 равно [m]5\cdot \sqrt{9}=15[/m] , т.е график функции

[m]f(x)=5\sqrt{5x^2+19}[/m] не ниже прямой [m]y=15[/m]

Рассмотрим правую часть.

Пусть
g(x)=–13|x|+3|4x–3a|–a2+3a

Раскрываем модули (по определению, рассматриваем 4 случая)

[m]g(x)=\left\{\begin{matrix}
-x-a^2-6a, x ≥0, 4x-3a ≥ 0 \\-25x-a^2+12a, x ≥0, 4x-3a < 0\\25x-a^2-6a, x <0; 4x-3a ≥ 0 \\x-a^2+12a, x <0; 4x-3a <0 \end{matrix}\right.[/m]

В первых двух строках получили убывающую линейную функцию,

в третьей и четвертой возрастающую

y(0)=–a2–6a или y(0)=–a2+12a

Найдем при каких значениях параметра а

–a2–6a≥ 15 или –a2+12a≥ 15

a2+6a+15 ≤ 0 или a2+12a+15 ≤ 0

D=36–60<0 или D=144–60=84

нет таких а или [m]\frac{-12-2\sqrt{21}}{2} ≤ a ≤ \frac{-12+2\sqrt{21}}{2}[/m]


О т в е т. [[m]-6-\sqrt{21};-6+\sqrt{21}[/m]]





Обсуждения

Написать комментарий

Категория

Меню

Присоединяйся в ВК