∫ (z · z) dz, AB – отрезок прямой, z_A = 0, z_B = 1 + 3i;
z=x–iy
z·z=(x+iy)(x–iy)=x2–(iy)2=x2+y2
f(z)=z·z=x2+y2
u(x;y)=Ref(z)=x2+y2
v(x;y)=Imf(z)=0
∫L f(z)dz= ∫L u(x;y)dx–v(x;y)dy+i· (∫L v(x;y)dx+u(x;y)dy)
∫ AB z·zdz= ∫AB( x2+y2)dx–0·dy+i· (∫AB 0·dx+(x2+y2)dy)=
АВ: y=3x –уравнение прямой АВ
x=t ⇒ dx=dt
y=3t ⇒ dy=3·dt
0 ≤ t ≤ 1
= ∫10 ( t2+(3t)2)dt–0·(3·dt)+i· (∫10 0·dt+( t2+(3t)2)·(3·dt))=
= ∫10 10t2dt+i· (∫10 30t2dt)=
=10·(t3/3)|10+i·(30·(t3/3))|10=(10/3)+i·10