Loading [MathJax]/extensions/tex2jax.js
Задать свой вопрос   *более 50 000 пользователей получили ответ на «Решим всё»

Задача 49144 Вычислить ctg ( 1/2 arccos 3/5 - 2 arctg...

Условие

Вычислить ctg ( 1/2 arccos 3/5 – 2 arctg (–1/2))

математика 10-11 класс 1018

Все решения

Пусть
arccos[m]\frac{3}{5}[/m]= α ⇒ cos α =[m]\frac{3}{5}[/m]=0,6 и α ∈ [0;[m]\frac{\pi}{2}[/m]] угол в первой четверти

sin α =+ √1–cos2 α =√1–0,62=0,8

arcctg (–[m]\frac{1}{2}[/m])= β ⇒ ctg β =–[m]\frac{1}{2}[/m]; β ∈ [[m]\frac{\pi}{2}[/m];π]

По условию задачи требуется вычислить

[m]ctg(\frac{1}{2}\alpha-2\cdot \beta)[/m]

cм (формулу в приложении)

Вычисляем:
[m]ctg(\frac{1}{2}\alpha)=ctg \frac{\alpha}{2}=\frac{1+cos \alpha}{sin\alpha} =\frac{1+0,6}{0,8} =2[/m]
Вычисляем:
[m]ctg2\beta= \frac{ctg^2\beta -1}{2ctg\beta} =\frac{(-\frac{1}{2})^2-1}{2\cdot (-\frac{1}{2})}=\frac{3}{4}[/m]

Итак,
[m]ctg(\frac{\alpha}{2}-2\cdot \beta)=\frac{2\cdot \frac{3}{4}+1}{\frac{3}{4}-2}=-2[/m]

О т в е т. –2

Обсуждения

Обсуждения

Написать комментарий

Категория

Меню

Присоединяйся в ВК