Задать свой вопрос   *более 50 000 пользователей получили ответ на «Решим всё»

Задача 45942 tg^3x+3>3tgx+tg^2x ...

Условие

tg3x+3>3tgx+tg2x

математика 10-11 класс 973

Решение

tg3x+3>3tgx+tg2x

tg3x+3–3tgx–tg2x>0
(tg3x–tg2x)+(+3–3tgx)>0
tg2x(tgx–1)–3(tgx–1)>0
(tgx–1)(tg2x–3)>0
(tgx–1)(tgx–√3)(tgx+√3)>0

___ (–√3) __+__ (1) ___–__ (√3) __+__

– √3 < tgx < 1 или tgx > √3

–(π/3)+πn <x<(π/4)+πn или (π/3)+πn < x <(π/2)+πn, n ∈ Z

Обсуждения

Написать комментарий

Категория

Меню

Присоединяйся в ВК