✎ Задать свой вопрос   *более 30 000 пользователей получили ответ на «Решим всё»

Задача 45726

УСЛОВИЕ:

1.Найдите все значения x и y , удовлетворяющие уравнению :
12sin x + 5cos x=2y^2-8y+21
2.Вычислите:
cos^4α+ sin^4α , если sin 2α=2/3

РЕШЕНИЕ ОТ sova ✪ ЛУЧШЕЕ РЕШЕНИЕ

1)
НЕСТАНДАРТНОЕ ТРИГОНОМЕТРИЧЕСКОЕ УРАВНЕНИЕ НА МАКСИМУМ И МИНИМУМ

12sinx+5cosx= 13*([m]\frac{12}{13}\cdot sinx+\frac{5}{13}\cdot cosx) =13\cdot [/m]cos(x- φ )

φ - [i]вспомогательный угол[/i], cos φ =[m]\frac{5}{13}[/m]; sin φ =[m]\frac{12}{13}[/m]

-1 ≤ cos(x- φ ) ≤ 1 ⇒ -1 3≤ 13*cos(x- φ ) ≤ 13

2y^2-8y+21 - квадратичная функция, которая принимает наименьшее значение в вершине
y_(o)=8/4=2

2*(2^2)-8*2+21=13

Левая часть ≤ 13, а правая наоборот ≥ 13

Возможно только равенство: значение 13 получено при [b]y=2[/b]

⇒ решаем уравнение

12 sinx+5cosx=13

13*cos(x- φ )=13

cos(x- φ )=1

x- φ =2πk, k ∈ Z

x= φ +2πk, k ∈ Z

x=arcsin=[m]\frac{12}{13}[/m]+2πk, k ∈ Z

О т в е т. arcsin=[m]\frac{12}{13}[/m]+2πk, k ∈ Z; 2)

2)
cos^4 α +sin^4 α =(cos^2 α )^2+(sin^2 α )^2=

[m]=(\frac{1+cos2 α}{2})^2+(\frac{1-cos2 α}{2})^2=[/m]

[m]=\frac{2+2cos^22 α}{4}=\frac{1+cos^22 α }{2}=\frac{1+(1-sin^22 α)}{2}= \frac{2-sin^22 α}{2}[/m]

При sin2 α =[m]\frac{2}{3}[/m]

[m]= \frac{2-(\frac{2}{3})^2}{2}= \frac{7}{9}[/m]


Вопрос к решению?
Нашли ошибку?

Добавил vk191149096, просмотры: ☺ 91 ⌚ 2020-03-31 23:26:59. математика 10-11 класс

Решения пользователей

Лучший ответ к заданию выводится как основной
Хочешь предложить свое решение? Войди и сделай это!

Написать комментарий

Последние решения
Решение векторно-координатным методом.

Вводим систему координат, как показано на рисунке.

Высота пирамиды
SO^2=SA^2-АО^2=1^2-(sqrt(2)/2)^2=1/2

h=SO=sqrt(2)/2

Точки G и F - cередины отрезков.

Находим их координаты как координаты середины


Составляем уравнения плоскостей

ABG:

CDF:


Угол между плоскостями - угол между их [i]нормальными[/i] векторами
(прикреплено изображение)
✎ к задаче 51595
(прикреплено изображение)
✎ к задаче 51601
Осевое сечение - правильный треугольник, значит основание треугольника 6 sqrt(3).
Основание осевого сечения - это диаметр основания конуса.

d=6sqrt(3)

2R=6sqrt(3) ⇒ R=3sqrt(3)

По теореме Пифагора

h^2=L^2-R^2=(6sqrt(3))^2-(3sqrt(3))^2=108-27=81

h_(конуса)=9
(прикреплено изображение)
✎ к задаче 51596
Ответ: Красильная
✎ к задаче 51597
R=1/2*6*sqrt(3)=3*sqrt(3)
h=sqrt((l^2-R^2))=sqrt( 36*3-9*3))=sqrt(81)=9
Ответ:9
✎ к задаче 51596