log x (x–3) – log x (9–x)/log x–1(x)<0
{x>0; x ≠ 1 {x–3>0 ⇒ x>3 {9–x>0 ⇒ x < 9 {x–1>0; x–1 ≠ 1 ⇒ x>1; x ≠ 2 x ∈ (3;9) [m]log_{x}(x-3)-log_{x}(9-x)=log_{x}\frac{x-3}{9-x}[/m] [m]\frac{log_{x}\frac{x-3}{9-x}}{log_{x-1}x}<0\Rightarrow log_{x}\frac{x-3}{9-x}\cdot log_{x}(x-1)<0 [/m]