{ x = cos t + t sin t,
{ y = sin t – t cos t, oт t = 0 до t = π/4.
x`(t)=(cost+tsint)`=(cost)`+t`·sint+t·(sint)`=–sint+sint+t·cost=t·cost
y`(t)=(sint–tcost)`=(sint)`–t`·cost–t·(cost)`=cost–cost–t·(–sint)=t·sint
(x`(t))2+(y`(t))2=t2cos2t+t2sin2t=t2(sin2t+cos2t)=t2·1=t2
√(x`(t))2+(y`(t))2=t
L= ∫ π/40 tdt=(t2/2)|π/40=π2/32