r = 1/φ от φ = 3/4 до φ = 4/3
r=(1/ φ )
r`( φ )=–1/ φ 2
√r2+(r`)2=√(1/φ)2+(–1/ φ 2)2d φ=(1/ φ )√ φ 2+1
L= ∫ 4/3 3/4 (√ φ 2+1/ φ )d φ =
замена переменной:
φ =tgt ⇒ d φ =dt/cos2t
φ 2+1=tg2+1=1/cos2t
√φ 2+1=1/cost
=∫ arctg( 4/3) arctg(3/4) (1/cost)/ tgt )d t/cos2t =
=∫ arctg( 4/3) arctg(3/4) dt/(sint·cos2t)
1=cos2t+sin2t
=∫ arctg( 4/3) arctg(3/4) (sin2t+cos2t)dt/(sint·cos2t)
=∫ arctg( 4/3) arctg(3/4) (sint/cos2t)dt + ∫ arctg( 4/3) arctg(3/4) dt/sint=
=((1/cost)+ln |tg(t/2)|)|^(arctg(4/3)_(arctg(3/4)=
=1/cos(arctg(4/3))–1/cos(arctg(3/4))+ln|tg(arctg(4/3))/2|–ln|tg(arctg(3/4))/2|
Теперь упрощаем
arctg(4/3)= α ⇒ tg α =(4/3) ⇒ cos α =? tg( α /2)=?
cos α =√1/(1+tg2 α )=√9/25=3/5 ⇒ sin α =4/5
tg( α /2)=sin α /(1+cos α )=1/2
arctg(3/4)= β ⇒ tg α =(3/4) ⇒ cos α =? tg( α /2)=?
cos α =√1/(1+tg2 α )=√16/25=4/5 ⇒ sin α =3/5
tg( α /2)=sin α /(1+cos α )=1/3
О т в е т. =(5/3)–(5/4)+ln(1/2|–ln|1/3|=(5/12)+ln(3/2)