(x–>о)
1–cos2 α =sin2 α
1–cos2(4x)=sin2(4x)
[m]\lim_{x \to 0}\frac{x^2}{1-cos^2(4x)}=\lim_{x \to 0}\frac{x^2}{sin^24x}=[/m]
[m]=\lim_{x \to 0}\frac{x}{sin4x}\cdot \lim_{x \to 0}\frac{x}{sin4x}=\frac{1}{4}\cdot \frac{1}{4}=\frac{1}{16}[/m]
так как
[m] \lim_{x \to 0}\frac{x}{sin4x}= \lim_{x \to 0}\frac{4x}{4sin4x}=\frac{1}{4}\cdot \lim_{x \to 0}\frac{4x}{sin4x}=\frac{1}{4}\cdot 1=\frac{1}{4}[/m]