(x–>оо)
[m]=\lim_{x \to \infty }x\cdot ln\frac{x+3-4}{x+3}=
\lim_{x \to \infty }x\cdot ln(1-\frac{4}{x+3})=[/m]
[m]=\lim_{x \to \infty } ln(1-\frac{4}{x+3})^{x}=\lim_{x \to \infty } ln((1-\frac{4}{x+3})^{-\frac{x+3}{4}})^{-\frac{4x}{x+3}}=[/m]
[m]=ln\lim_{x \to \infty } ((1-\frac{4}{x+3})^{-\frac{x+3}{4}})^{-\frac{4x}{x+3}}=ln e^{lim_{x \to \infty }\frac{-4x}{x+3}}=[/m]
[m]=lne^{-4}=-4lne=-4[/m]