sin2x=(1/2)sinx–(√3/2)cosx
Вводим вспомогательный угол:
sin2x=cos(π/3)sinx–sin(π/3)cosx
sin2x=sin(x–(π/3))
sin2x–sin(x–(π/3))=0
2sin((x/2)+(π/6))·cos((3x/2)–(π/6))=0
(x/2)+(π/6)=πk, k ∈ Z
x/2=–(π/6)+πk, k ∈ Z
x=–(π/3)+2πk, k ∈ Z
или
(3x/2)–(π/6)=(π/2) +πn, n ∈ Z
(3x/2)=(2π/3)+πn, n ∈ Z
x=(4π/9)+(2/3)πn, n ∈ Z