Решите уравнение log1/8x+5log4x+log√2x = 16 целых 2/3
Применяем свойства логарифма: logakb=[m]\frac{1}{k}[/m]logab log1/8x=log2–3x=(–1/3)log2x log4x=log22x=(1/2)log2x log√2x=log21/2x=2log2x (–1/3)log2x+(5/2)log2x+2log2x=50/3 (25/6)log2x=50/3 log2x=4 x=24 x=16