cos 3x + sin 3x = √2, [7π/4; 9π/4]
4.4.4
1 + cos 2x + sin 2x = 0
[m]\frac{1}{\sqrt{2}}cos3x+\frac{1}{\sqrt{2}}sin3x=1[/m]
Заменим
[m]\frac{1}{\sqrt{2}}=cos\frac{\pi}{4}[/m]
[m]\frac{1}{\sqrt{2}}=sin\frac{\pi}{4}[/m]
[m]cos\frac{\pi}{4}\cdot cos3x+sin\frac{\pi}{4}\cdot sin3x=1[/m]
[m]cos(3x-\frac{\pi}{4})=1[/m]
[m]3x-\frac{\pi}{4}=2\pi n[/m], n ∈ Z ⇒
[m]3x=\frac{\pi}{4}+2\pi n[/m], n ∈ Z ⇒
[m]x=\frac{\pi}{12}+\frac{2\pi}{3} n[/m], n ∈ Z – о т в е т
4.44
cos2x=cos2x–sin2x=(cosx–sinx)·(cosx+sinx)
1+sin2x=sin2x+cos2x+2sinx·cosx=(sinx+cosx)2
(cosx–sinx)·(cosx+sinx)+(sinx+cosx)2=0
(cosx+sinx)·(cosx–sinx+sinx+cosx)=0
cosx+sinx=0 или 2cosx=0
tgx=–1 или cosx =0
x=(–π/4)+πk, k ∈ Z или x=(π/2)+πn, n ∈ Z