✎ Задать свой вопрос   *более 30 000 пользователей получили ответ на «Решим всё»

Задача 425 На доске написано более 40, но менее 48

УСЛОВИЕ:

На доске написано более 40, но менее 48 целых чисел. Среднее арифметическое этих чисел равно -3, среднее арифметическое всех положительных из них равно 4, а среднее арифметическое всех отрицательных из них равно -8.
а) Сколько чисел написано на доске?
б) Каких чисел написано больше: положительных или отрицательных?
в) Какое наибольшее количество положительных чисел может быть среди них?

РЕШЕНИЕ:

Вопрос к решению?
Нашли ошибку?
Показать имеющиеся вопросы (1)

ОТВЕТ:

а) 44; б) отрицательных; в) 17.

Добавил slava191, просмотры: ☺ 5330 ⌚ 11.01.2014. математика 10-11 класс

Решения пользователелей

Хочешь предложить свое решение? Войди и сделай это!
Увы, но свой вариант решения никто не написал... Будь первым!

Написать комментарий

Последние решения
Линейное неоднородное дифференциальное уравнение второго постоянными коэффициентами.

Решаем однородное дифференциальное уравнение второго постоянными коэффициентами.
y'' –4y'+8y=0

Составляем характеристическое уравнение:
k^2 –4k+8=0
D=16-32=-16
sqrt(D)=4i

k_(1)=2-2i;k_(2)=2+2i;

α =2
β=2

y_(общ одн) находят по формуле:
y_(общ одн)=e^( α x)*(C_(1)cosβx+С_(2)sinβx)


y_(част неодн)=e^(x)(Asinx+Bcosx)
[удалить]
✎ к задаче 38401
Замена
y``=z
тогда
y```=z`

xz`-z=sqrt(x) - линейное уравнение вида
z`-p(x)z=q(x)

Решается методом Бернулли (z=u*v) или методом вариаций.

z=y``

y`= ∫ zdx

y``= ∫ y`dx
[удалить]
✎ к задаче 38399
Применяем радикальный признак Коши:

lim_(n→∞ ) (a_(n))^(1/n)= lim_(n→∞ )(n+1)/(2n+1) =1/2 < 1

Ряд сходится

[удалить]
✎ к задаче 38413
Ионная
Во всех соединениях неметаллов с металлами
[удалить]
✎ к задаче 38415
2x^2+y^2=4 ⇒ выразим y^2=4-2x^2

Тогда
4x+y^2=4x+4-2x^2 - квадратный трехчлен, который принимает наибольшее значение при x=1
( в вершине параболы, абсцисса вершины х_(o)=-b/2a)

4*1+4-2*1^2= [b]6[/b] - максимальное значение, которое может принимать выражение 4x + y^2.


2x^2+y^2=4 ⇒ выразим x^2=(4-y^2)/2

x= ± sqrt((4-y^2)/2)

Наименьшее значение выражение
4x+y^2 принимает при x=-sqrt((4-y^2)/2)

х < 0 при любом |y|≤ 2

Чтобы сумма отрицательного числа и неотрицательного (y^2)
принимала наименьшее значение надо, чтобы y^2=0 ⇒

x=-sqrt((4-0)/2)=-sqrt(2)

4x+y^2=4*(-sqrt(2))+0= [b]-4sqrt(2) [/b] - минимальное значение, которое может принимать выражение 4x + y^2.
[удалить]
✎ к задаче 38412