Найти длину дуги кривой [m] y = \ln \sin x [/m] от [m] x = \frac{\pi}{3} [/m] до [m] x = \frac{\pi}{2} [/m]
f(x)=lnsinx f`(x)=(1/sinx)·(sinx)`=cosx/sinx=ctgx L= ∫ π/2π/3√1+(ctgx)2 dx= ∫ π/2π/3√1/sin2x dx=∫ π/2π/3(1/sinx) dx=ln|tg(x/2)|)||π/2π/3= =ln|tg(π/4)|–ln|tg(π/6)|=ln1–ln(1/√3)=0–ln3–1/2)=(1/2)ln3 О т в е т. (1/2)ln3