∫ sin4x×cos4x dx
∫ tg4 x/2 dx
sin4x·cos4x=(1/16)sin42x=(1/16)·(sin22x)2=(1/16)·((1–cos4x)/2)2=
=(1/64)·(1–2cos4x+cos24x)=(1/64)·(1–2cos4x+ (1+cos8x)/2)=
=(1/64)–(1/32)cos4x +(1/128)+(1/128)cos8x=
=(3/128)–(1/32)cos4x+(1/128)cos8x
∫ sin4x·cos4x dx= (3/128) ∫ dx – (1/32) ∫ cos4xdx+(1/128) ∫ cos8xdx=
=(3/128)x–(1/128)sin4x+(1/1024)sin8x+C
tg4(x/2)=tg2(x/2)·tg2(x/2)=tg2(x/2) ·((1/cos2(x/2)) –1)=
=tg2(x/2)·(1/cos2x/2) – tg2(x/2)=
=tg2(x/2)·(1/cos2x/2) – ((1/cos2(x/2)) –1)=
=tg2(x/2)·(1/cos2x/2) – (1/cos2(x/2)) +1
∫ tg4(x/2) dx= ∫ tg2(x/2)·(1/cos2x/2)dx – ∫ (1/cos2(x/2))dx + ∫ dx=
= 2 ∫ tg2(x/2) d(tg(x/2)) – 2 ∫ d(x/2)/cos2(x/2) +x +c=
=2(tg3(x/2))/3–2tg(x/2) + x + C=
=(2/3)·tg3(x/2)–2tg(x/2) + x + C
так как
d(tg(x/2))=(1/cos2(x/2))·(x/2)`dx ⇒
2d(tg(x/2)=dx/cos2(x/2)