✎ Задать свой вопрос   *более 30 000 пользователей получили ответ на «Решим всё»

Задача 41800 Найти частное решение линейного

УСЛОВИЕ:

Найти частное решение линейного дифференциального уравне-ния второго порядка с постоянными коэффициентами и специальной правой частью при указанных начальных условиях. y''-9y'+20y=3e^(4x)
y(0)=0 y'(0)=0

РЕШЕНИЕ ОТ sova ✪ ЛУЧШЕЕ РЕШЕНИЕ

Линейное неоднородное уравнение второго порядка с постоянными коэффициентами.

Решаем однородное:
y''–9y'+20y=0

Составляем характеристическое уравнение:
k^2-9k+20=0

D=(-9)^2-4*20=1

k_(1,2)=(9 ± 1)/2

k_(1)=4; k_(2)=5– корни действительные различные


Общее решение однородного имеет вид:
y_(одн.)=С_(1)*e^(k_(1)х)+C_(2)*e^(k_(2)x)

В данном случае

y_(одн.)=С_(1)*e^(4х)+C_(2)*e^(5x)


Так как k_(1)=4 и правая часть содержит e^(4x)

частное решение неоднородного уравнение находим в виде:
y_(част)=A*[b]x[/b]*e^(4x)


Находим производную первого, второго порядка

y`_(част)=А*e^(4x)+A*x*e^(4x)*(4x)`=А*e^(4x)+4A*x*e^(4x)

y``_(част)=4A*e^(4x)+4*(А*e^(4x)+4A*x*e^(4x))=

=8А*e^(4x)+16A*x*e^(4x)


подставляем в данное уравнение:

8А*e^(4x)+16A*x*e^(4x))-9*(А*e^(4x)+4A*x*e^(4x))+20Ax*e^(4x)=3e^(4x)

-A*e^(4x)=3e^(4x)

A=-3



О т в е т.
y=y_(одн)+y_(част)=

[b]y=С_(1)*e^(4x)+C_(2)*e^(5x)-3*x*e^(4x)[/b]

При начальных условиях
y(0)=0
найдем значения коэффициентов
C_(1) и С_(2)

[b]0=С_(1)*e^(0)+C_(2)*e^(0)-3*0e^(0)[/b]

C_(1)+C_(2)=0

[blue]y`=4*С_(1)*e^(4x)+5*C_(2)*e^(5x)-3*e^(4x)-12x*e^(4x)[/blue]

y'(0)=0

[blue]0=4*С_(1)*e^(0)+5*C_(2)*e^(0)-3*e^(0)-12*0*e^(0)[/blue]

4C_(1)+5C_(2)=3

Система:
{[b]C_(1)+C_(2)=0[/b]
{[blue]4C_(1)+5C_(2)=3[/blue]

{[b]-4C_(1)-4C_(2)=0[/b]
{[blue]4C_(1)+5C_(2)=3[/blue]

Cкладываем:
C_(2)=3

C_(1)=-C_(2)=-3

Решение при начальных условиях:

[b]y=3*e^(4x)-3e^(5x)-3xe^(4x)[/b]



Вопрос к решению?
Нашли ошибку?

Добавил vk289444173, просмотры: ☺ 68 ⌚ 2019-11-21 22:58:52. математика 2k класс

Решения пользователей

Лучший ответ к заданию выводится как основной
Хочешь предложить свое решение? Войди и сделай это!

Написать комментарий

Последние решения
cos α =(r_(2)-r_(1))[i]/l[/i]

По условию:
π(r_(1)+r_(2))*[i]l[/i]=2*4πR^2

(r_(1)+r_(2))*[i]l[/i]=8*R^2 ⇒[i] l[/i]=8R^2/(r_(1)+r_(2))

cos α =(r_(2)-r_(1))[i]/l[/i]=(r_(2)-r_(1))(r_(1)+r_(2))/8R^2=

=(r^2_(2)-r^2_(1))/8R^2

Осталось выразить числитель через R^2, используя тот факт, что осевое сечение конуса - равнобедренная трапеция
(прикреплено изображение)
✎ к задаче 42350
Расстояние между параллельными прямыми одно и то же.

По теореме Пифагора
с одной стороны:
d^2=x^2-a^2

C другой стороны:
d^2=(c-x)^2-b^2

Приравниваем правые части

x^2-a^2=(c-x)^2-b^2
x^2-a^2=c^2-2cx+x^2-b^2

2cx=c^2-b^2+a^2

x=(c^2+a^2-b^2)/2c


c-x=c - ((c^2+a^2-b^2)/2c)=(2c^2-c^2-a^2+b^2)/2c=(c^2+b^2-a^2)/2c


О т в е т. (c^2+a^2-b^2)/2c и (c^2+b^2-a^2)/2c
(прикреплено изображение)
✎ к задаче 42349
В треугольниках ADC и ВEC:
1) ∠ СBE= ∠ CAD по условию
2) АС=ВС по условию
3) ∠ С - общий

Треугольники равны по стороне и двум прилежащим к ней углам
(прикреплено изображение)
✎ к задаче 42352
3) ΔАДС= ΔВЕС по стороне и прилежащей к ней двум углам.
1) ∠ С- общий
2) ∠ А= ∠ В по условию
3 АС=ВС по условию
✎ к задаче 42352
sinx*cosx=(1/2)sin2x

sin^4x*cos^4x=(1/16)sin^42x=(1/16)*(sin^22x)^2=(1/16)*((1-cos4x)/2)^2=

=(1/64)*(1-2cos4x+cos^24x)=(1/64)*(1-2cos4x+ (1+cos8x)/2)=

=(1/64)-(1/32)cos4x +(1/128)+(1/128)cos8x=

=(3/128)-(1/32)cos4x+(1/128)cos8x



∫ sin^4x*cos^4x dx= (3/128) ∫ dx - (1/32) ∫ cos4xdx+(1/128) ∫ cos8xdx=

=[b](3/128)x-(1/128)sin4x+(1/1024)sin8x+C[/b]


tg^4(x/2)=tg^2(x/2)*tg^2(x/2)=tg^2(x/2) *((1/cos^2(x/2)) -1)=

=tg^2(x/2)*(1/cos^2x/2) - tg^2(x/2)=

=tg^2(x/2)*(1/cos^2x/2) - ((1/cos^2(x/2)) -1)=

=tg^2(x/2)*(1/cos^2x/2) - (1/cos^2(x/2)) +1



∫ tg^4(x/2) dx= ∫ tg^2(x/2)*(1/cos^2x/2)dx - ∫ (1/cos^2(x/2))dx + ∫ dx=

= 2 ∫ tg^2(x/2) d(tg(x/2)) - 2 ∫ d(x/2)/cos^2(x/2) +x +c=

=2(tg^3(x/2))/3-2tg(x/2) + x + C=

=[b](2/3)*tg^3(x/2)-2tg(x/2) + x + C[/b]


так как
d(tg(x/2))=(1/cos^2(x/2))*(x/2)`dx ⇒

[blue]2d(tg(x/2)=dx/cos^2(x/2)[/blue]
✎ к задаче 42351