(x3–2x)/(x2–3x+2)=(x+3) +(7x–6)/(x2–3x+2)
x2–3x+2=(x–1)·(x–2)
Дробь
(7x–6)/(x2–3x+2) раскладываем на две простейшие дроби
(7x–6)/(x2–3x+2) =A/(x–1)+ B/(x–2)
7x–6=A·(x–2)+B·(x–1)
При x=2
8=A·0+B
B=8
При х=1
1=– А+B·0
А=–1
(x3–2x)/(x2–3x+2)=(x+3) –(1)/(x–1)+ (8)/(x–2)
Интеграл от суммы равен сумме интегралов
∫ (x3–2x)/(x2–3x+2)dx= ∫ (x+3)dx– ∫dx/(x–1) +8· ∫dx/(x–2)
=(x2/2)+3x–ln|x–1|+8ln|x–2|+C