tg(x/2)=t
x/2= arctgt
x=2arctgt
dx=2dt/(1+t2)
sinx=2t/(1+t2)
cosx=(1–t2)/·(1+t2)
∫ dx/(2sinx+3cosx)= ∫ 2dt/(4t+3–3t2)=(–2/3) ∫ dt/(t2–(4/3)t+1)=
выделяем полный квадрат
t2–2·(2/3)t+(4/9)–(4/9)+1=((t–(2/3))2+(5/9)
=(–2/3)·(1/√5/9) arctg (t/√5/9)+C=
= (–2/√5) arctg (3tg(x/2))/√5 +C