w=(z2)/2z + (1/2z)
w=(1/2)z + (1/2)·(1/z)
1)
w(–4–i)=(1/2)·(–4–i)+(1/2)·(1/(–4–i))=–2–(1/2)i–(1/2)· (4–i)/(42–i2)=
=–2 –(1/2)i – (1/2) ( 4–i)/17= –2 – (1/2)i – 2 +(1/34)i= = –4 –(8/17)i
2)
w(–3+4i)=(1/2)·(–3+4i) +(1/2)·(1/(–3+4i))=
=(–3/2)+2i–(1/2)·(3+4i)/(9–16i2)=
=(–3/2)+2i–(3/25)–(2i/25)=
(–81/50)+(48/50)i