✎ Задать свой вопрос   *более 30 000 пользователей получили ответ на «Решим всё»

Задача 37257 Найдите все значение [b]а[/b], при

УСЛОВИЕ:

Найдите все значение [b]а[/b], при каждом из которых уравнение

ax^2+2(a-1)x+(a-4) = 0

имеет два корня, расстояние между которыми больше 3

Добавил ntshmtvv, просмотры: ☺ 128 ⌚ 2019-05-19 12:59:07. математика 10-11 класс

Решения пользователей

РЕШЕНИЕ ОТ sova

D=(2(a-1))^2-4*a*(a-4)=8a+4
Если D>0 уравнение имеет два корня.

8a+4 > 0

a> -1/2


По теореме Виета
x_(1)+x_(2)=-2(a-1)
x_(1)*x_(2)=a-4

Найдем разность

x_(2)-x_(1)


Возведем первое уравнение в квадрат

x^2_(1)+2x_(1)x_(2)+x^2_(2)=-2a+2

Вычтем 4x_(1)x_(2)

x^2_(1)-2x_(1)x_(2)+x^2_(2)=-2a+2-4x_(1)x_(2)

(х_(2)-х_(1))^2= - 2a+2 -4*(a-4)

(х_(2)-х_(1))^2= 18-6a

x_(2)-x_(1)=sqrt(18-6a)

По условию

x_(2)-x_(1)>3

Значит

sqrt(18-6a) > 3

18-6a > 9

6a < 9

a < 3/2


О т в е т. (-1/2; 3/2)

Вопрос к решению?
Нашли ошибку?
Хочешь предложить свое решение? Войди и сделай это!

Написать комментарий

Последние решения
Вводим в рассмотрение события ( гипотезы):
H_(1)-"из первого ящика во второй переложили два белых шарика"
H_(2)-"из первого ящика во второй переложили два черных шарика"
H_(3)-"из первого ящика во второй переложили один белый и один черный или один черный и один белый шарик"

p(H_(1))=\frac{2}{6}\cdot\frac{1}{5}=\frac{2}{30}
p(H_(2))=\frac{4}{6}\cdot\frac{3}{5}=\frac{12}{30}
p(H_(3))=\frac{2}{6}\cdot\frac{4}{5}+\frac{4}{6}\cdot\frac{2}{5}=\frac{16}{30}

A-" из второго ящика вынут белый шарик"

p(A/H_(1))=\frac{5}{6}
p(A/H_(2))=\frac{3}{6}
p(A/H_(3))=\frac{4}{6}

По формуле полной вероятности:
p(A)=p(H_(1))*p(A/H_(1))+p(H_(2))*p(A/H_(2))+p(H_(3))*p(A/H_(3))=

=\frac{2}{30}\cdot\frac{5}{6}+\frac{12}{30}\cdot\frac{3}{6}+\frac{16}{30}\cdot\frac{4}{6}=\frac{11}{18}



✎ к задаче 40763
(прикреплено изображение)
✎ к задаче 40760
(прикреплено изображение)
✎ к задаче 40761
cos ∠ C=-3/4, значит угол С - тупой.
∠ С= ∠ B
∠ D= ∠ A - острые.

Сумма углов, прилежащих к боковым сторонам трапеции равна 180 градусов.

cos ∠ D=cos(180 ° - ∠ C)=-cos ∠ C=-(-3/4)=3/4

Теперь легко найти высоту трапеции и нижнее основание

Проводим высоты ВК и СМ из точек В и С на AD
КМ=ВС=5 см

AК=МD=СD*cos ∠ C=8*(3/4)=6
AD=AK+KM+MD=6+5+6=17

СM^2=CD^2-MD^2=8^2-6^2=64-36=28

CM=sqrt(28)=sqrt(4*7)=2sqrt(7)

S(трапеции)=(AD+BC)*CM/2=(17+5)*(2sqrt(7))/2=22sqrt(7)


(прикреплено изображение)
✎ к задаче 40761
(прикреплено изображение)
✎ к задаче 40755