1,5 ∫ 0 dx/√81 + x4
(см. приложение).
√81+x4=sqrt(81·(1+(x4/81))=9·√1+(x4/81)
1/√81+x4=(1/9)·(1+(x4/81))–1/2/3=
=(1/9)·(1–(1/2)·(x4/81)+(1/2!)·(–1/2)·((–1/2)–1)·(x4/81)2+...
=(1/9)–(1/(18·81))·x4+(3/72)·(x8/812)+...
(x/3)4 < 1 ⇒ –3<x<3
∫ 1,50 dx/√81+x4=
= ∫ 1,50 ((1/9)–(1/(18·81))·x4+(3/72)·(x8/812) )dx=
= ((1/9)x– (1/1458)·(x5/20) +(3/(72·812))·(x9/9) )|1,50=
=считайте...