1) ∫(4 – x7 + 1/x7) dx;
2) ∫ (9x – 3/x4 + 2x5) dx;
3) ∫(6x11 + 4x – 1) dx;
4) ∫(7x – 3)3 dx;
5) ∫ 12dx/(4 – 6x)5;
6) ∫ sin 3x dx.
∫ (4–x7+x–7)dx= 4x – x8/8 +x–6/(–6) + C=4x–(1/8)x8–(1/6)·(1/x6)+C
2)
1)
∫ (9x–3x–4+2x5)dx= (9x2/2) –3·x–3/(–3) +2x6/(6) + C=
=(9/2)x2+(1/x3)+(1/3)·x6+C
3)
∫ (6x11+4x–1)dx=6·x12/12 +4·(x2/2)–x +C=(1/2)·x12+2·x2–x+C
в 4); 5); 6) применяем метод подведения под дифференциал.
(см. приложение)
4)
∫ (7x–3)3dx=(1/7) ∫ (7x–3)3d(7x–3)=(1/7)·((7x–3)4/4)+C=
=(1/28)·(7x–3)4
5)12·(–1/6) ∫ (4–6x)–5d(4–6x)=(–2)·(4–6x)–4/(–4)+C=
=(1/2)·(1/(4–6x)4) + C
6)
∫ sin3xdx= ∫ sin3x·d(3x)/3=(1/3) ∫ sin(3x)d(3x)=(1/3)·(–cos3x)+C=
=(–1/3)cos3x+C