∫ cos5 x / (1 + sin x) dx;
∫ dx / (2 sin2x + 7 cos2x);
∫ sin2 x / cos10 x dx;
∫ sin4 x cos3 x dx;
∫ sin6 2x dx;
∫ cos 3x cos 2x dx
∫ сos3x·cos2xdx
Формула
сos α ·cos β =(1/2)cos( α + β )+(1/2)cos( α – β )
сos3x·cos2x=(1/2)cos5x+(1/2)cosx
∫ сos3x·cos2xdx= ∫ ((1/2)cos5x+(1/2)cosx)dx
интеграл от суммы равен сумме интегралов:
=(1/2) ∫ сos5xdx+(1/2) ∫ cosxdx=(1/2)·(1/5)·sin5x +(1/2)sinx+C=
= (1/10)sin5x+(1/2)sinx+C
6.
cos62x=(cos22x)3=((1+cos4x)/2)3=(1+3cos4x+3cos24x+cos34x)/8
Интеграл от суммы равен сумме интегралов:
∫ cos62xdx=(1/8)∫ dx+(3/8)∫ cos4xdx+(3/8)∫ cos24xdx+(1/8)∫ cos34xdx=
=(1/8)x+(3/8)·(1/4)·sin4x +(3/8)·(1/2) ∫ (1+cos8x)dx+(1/8) ∫ (1–sin24x)·cos4xdx=
= (1/8)x +(3/32)sin4x+ (3/16)x +(3/16)·(1/8)·sin8x+
+(1/8)·(1/4)·sin4x–(1/8)·(1/4)·(sin34x/3)+C=
привести подобные
5.
∫ sin4x·cos3xdx= ∫ sin4x·cos2x·cosxdx=
= ∫ sin4x·(1–sin2x)·cosxdx= ∫ sin4x·cosxdx– ∫ sin6xcosxdx=
= ∫ sin4x·d(sinx)– ∫ sin6xd(sinx) =(sin5x/5)–(sin7x/7) + C
3.
2sin2x+7cos2x=cos2x·(2tg2x+7)
∫ dx/(2sin2x+7cos2x)= ∫dx/ cos2x(2tg2x+7)=
=(1/2) ∫ d(tgx)/(tg2x+(7/2)= (1/2)·(1/√7/2)arctg(tgx/√7/2C=
= (1/√14) arctg (√2tgx/√7) + C
1.
tg(x/2)=t
x/2=arctgt
x=2arctgt
dx=2dt/(1+t2)
cosx=(1–t2)/(1+t2)
2–cosx=1–(1–t2)/(1+t2)=(2+2t2–1+t2)/(1+t2)=(3t2+1)/(t2+1)
∫ dx/(2–cosx)= ∫ dt/(3t2+1)= (1/3) ∫ dt/(t2+(1/3))=
=(1/3)·(1/√1/3)· arctg (t/√1/3)+C=
= (1/√3) arctg(√3·tg(x/2)) + C
2.
cos5x=cos4x·cosx=(cos2x)2·cosx=(1–sin2x)2·cosx=
=(1–sinx)2·(1+sinx)2·cosx
∫ cos5xdx/(1+sinx)= ∫ (1–sinx)2·(1+sinx)cosxdx
sinx=t
cosxdx=dt
= ∫ (1–t2)·(1+t)dt= ∫ (1–t2+t–t3)dt= t–(t3/3)+(t2/2)–(t4/4) + C=
= sinx– (sinx)3/3 + (sinx)2/2 – (sinx)4/4 + C
4.
tgx=t
x=arctgt
dx=dt/(1+t2)
1+tg2t=1/cos2x
cos2x=1/(1+tg2x)=1/(1+t2)
sin2x=1–cos2x=1–(1/(1+tg2x))=tg2x/(1+tg2x)=t2/(1+t2)
∫ sin2xdx/cos10x=
= ∫ t2·(1+t2)5dt/(1+t2)2=
= ∫ t2·(1+t2)3dt=
= ∫ (t2+3t4+3t6+t8)dt=
=(t3/3)+(3t5/5)+(3t7/7)+(t9/9) + C=
= (tg3x/3)+(3tg5x/5)+(3tg7x/7)+(tg9x/9) + C