∫[от 0,5 до 3] √(2x + 3) dx
∫[от –1 до 1] (4xs + 1)3 dx
∫[от 2 до 1] (3x2 – 4x – 1) dx
∫[от 0 до π] cos2 x sin x dx
=(2x+3)(1/2)+1/((1/2)+1)=(2/3)(2x+3)3/2|30,5=
=(2/3)·(2·3+3)3/2 – (2/3)·(2·0,5+3)3/2=
=(2/3)33–(2/3)·23=(2/3)·(27–8)= 38/3
∫ 1–2(3x2–4x–1)dx= (x3–2x2–x)|1–2=
=(1–2–1)–(–8–8–(–2))= ...
∫ π0cos2xsinxdx=∫ π0cos2x(–d(cosx))=
= –(cos3x/3)|π0=–(1/3)·(cos3(π)–cos0)=(–1/3)·(–1–1)= 2/3
∫ 1–1(4xS+1)3dx=(1/(4S)) ∫ 1–1(4xS+1)3d(4xS+1)=
=(1/(4S)) ·(4xS+1)4/4|1–1= (1/(16S)) ·((4S+1)4–(1–4S)4)