Задать свой вопрос   *более 50 000 пользователей получили ответ на «Решим всё»

Задача 35123 Задание на картинке...

Условие

Задание на картинке

математика 857

Решение

1.
sin5x=sin4x·sinx=(sin2x)2·sinx=(1–cos2x)2·sinx

Замена переменной
cosx=t
dt=(cosx)`·dx
dt=–sinxdx
sinxdx=–dt

получим

∫ (1–t2)2·(–dt)/(3–t)= ∫ (t4–2t2+1)dt/(t–3)
неправильная дробь. Выделяем целую часть.

= ∫ (t3+3t2+7t+21+ (64/(t–3))dt=

= (t4/4)+(3t3/3)+(7t2/2)+21t+64ln|t–3|+C, t=cosx

2.

2sin2x+9cos2x=2cos2x·(t2+(9/2))

Замена переменной
tgx=t
dx/cos2x=dt

получим:

1/2∫ dt/(t2+(9/2))=

Формула ∫ dx/(x2+a2)=(1/a)· arctg (x/a); a2=9/2 a=3/√2

=(1/2)·(√2/3)arctg( √2·t/3) + C=

= (√2/6)·arctg((√2tgx)/3) + C



3.
Замена
tgx=t
x=arctg t
dx=dt/(1+t2)

1+tg2x=1/cos2x;

cos2x=1/(1+tg2x)=1/(1+t2)

sin2x=tg2x·cos2x=t2/(1+t2)

sin8x=(sin2x)4=t8/(1+t2)4
cos14x=1/(1+t2)7

sin8x/cos14 =(t8/(1+t2)4)· (1+t2)7= (1+t2)3·t8

sin8x dx /cos14= (1+t2)3·t8 · (dt/(1+t2))


получим

∫ t8·(1+t2)2dt= ∫ t8·(1+2t2+t4)dt= ∫ (t12+2t10+t8)dt=

=t13/13 + 2t11/11+ t9/9 + C=

= (tgx)13/13 + 2(tgx)11/11 + (tgx)10/10 + C

4.

sin2x=(1–cos2x)/2;
cos2x=(1+cos2x)/2

sin2x·cos2x=(1–cos2x)·(1+cos2x)/4=(1–cos22x)/4=

=(1/4) – (1/4) cos22x=(1/4) – (1/4)·(1+cos4x)/2=

=(1/4)–(1/8) –(1/8) cos4x= (1/8) –(1/8)cos4x


∫ sin2x·cos2xdx= ∫ ((1/8) –(1/8)cos4x)dx=

= (1/8)x – (1/32) · sin4x + C

Обсуждения

Написать комментарий

Категория

Меню

Присоединяйся в ВК