S= ∫ 1–2((4–x2)–(x+2))dx= ∫ 1–2(4–x2–x–2)dx= ∫1–2(2–x2–x)dx=
=(2x–(x3/3)–(x2/2))|1–2=(2–(1/3)–(1/2)) – (4–(–8/3)–(4/2))=
2)
S= ∫ π/3–π/6 |–sinx|dx = ∫ 0–π/6(–sinx)dx+ ∫ π/30sinxdx=
=cosx|0–π/6 – cosx| π/30=cos0–cos(–π/6)–cosπ/3+cos0=1–(1/2)–√3/2+1=
=
3)
S= ∫–2 –4(x2+6x+11)dx+ ∫–1–2(1–x)dx=
=((x3/3)+(6x2/2)+11x)|–2 –4 + (x–(x2/2))|–1–2=
=(–8/3)+3·4–22 – (–64/3)–3·(16)–11·(–4) (–1–(1/2))–(–2–(4/2))=