tg(x/2)=t
x/2=arctgt
x=2arctgt
dx=2/(1+t2)
sinx=2t/(1+t2)
cosx=(1–t2)/(1+t2)
3 + sinx + cosx = 3 + 2t/(1+t2) + (1–t2)/(1+t2)
3 + sinx + cosx = (3+3t2+2t+1–t2)/(1+t2)
∫ dx/(3 + sinx + cosx)= ∫ 2dt/(2t2+2t+4)=
= ∫ dt/(t2+t+2)= ∫ dt/((t+(1/2))2+(7/4))=
=(1/√7/4)·arctg(t+(1/2))/√7/2+C=
=(2/√7)· arctg((2t+1)/√7) + C=
= (2/√7) · arctg ((2tg(x/2)+1)/√7)+C