x=A·(x2+x+1)+(Mx+N)(x–2)
x=Ax2+Ax+A+Mx2+Nx–2Mx–2N
A+M=0
A+N–2M=1
A–2N=0
3,5A=1
A=2/7
M=–2/7
N=1/7
=(2/7) ∫dx/(x–2) – (1/7) ∫ (2x–1)/(x2+x+1)=
=(2/7) ∫dx/(x–2) – (1/7) ∫ (2x–1)dx/((x+0,5)2+0,75)=[x+0,5=t;dx=dt;x=t–0,5]
=(2/7) ∫dx/(x–2) – (1/7) ∫ (2(t–0,5)–1)dt/(t2+0,75)=
=(2/7) ∫dx/(x–2) – (1/7) ∫ 2tdt/(t2+0,75)+(2/7) ∫ dt/(t2+0,75)=
= (2/7)ln|x–2| –(1/7)ln|x2+x+1| +(2/7)·(2/√3)arctg(x+0,5)/√3/2 + C