число a в алгебраической и тригонометрической формах; 2) найти все корни
уравнения z3 + a= 0
a=x+iy
x=–1
y=–√3
r=√x2+y2=√4=2
cos φ =x/r=–1/2
sin φ =y/r=–√3/2
φ =–2π/3
a=r·(cos φ +isin φ )=2·(cos(–2π/3)+isin(–2π/3))=2cos(2π/3)–isin(2π/3)
a=r·eiφ =2·ei·(–2π/3)+2πk, k ∈ Z
2.
z3=1+√3
1+√3=2·(cos(π/3)+isin(π/3))
z1/3=∛2· ( cos(((π/3)+2πk)/3)+isin(((π/3)+2πk)/3) )
при k=0
z0 =∛2·(cos(π/9)+isin(π/9)
z1=∛2·(cos(((π/3)+2π)/3)+isin(((π/3)+2π)/3)=
=∛2·(cos(7π/9)+isin(7π/9))
z2 =∛2·(cos(13π/9)+isin(13π/9))