∫ (x sin x / cos³ x) dx
0
u=x ⇒ du=dx
dv=sinxdx/cos3x ⇒ v= ∫ sinxdx/cos3x = ∫ cos–3x(–d(cosx))=
=–cos–2/(–2)=1/(2·cos2x)
= (x/(2·cos2x))|π/30 – ∫ π/30dx/(2·cos2x)=
=(π/3)/(2·(1/2)2) – 0 – ((1/2)tgx)|π/30=
= (2π/3)– (1/2)√3