✎ Задать свой вопрос   *более 30 000 пользователей получили ответ на «Решим всё»

Задача 34893

УСЛОВИЕ:

РЕШЕНИЕ ОТ sova ✪ ЛУЧШЕЕ РЕШЕНИЕ

Линейное неоднородное уравнение второго порядка с постоянными коэффициентами.
Составляем характеристическое уравнение:
k^2-2k=0
k_(1)=0; k_(2)=2- корни действительные различные

Общее решение однородного имеет вид:
y_(одн.)=С_(1)e^(0)+C_(2)e^(2x)

частное решение неоднородного
x=0 - корень характеристического уравнения кратности x
y_(част)=(Ax+B)*x - линейная функция умножается на х в первой степени.
(кратность корня 1)

Находим производную первого, второго порядка
y_(част)=Ax^2+Bx
y`_(част)=2Ax+B
y``_(част)=2А

и подставляем в данное уравнение:

2A-2*(2Ax+B)=5x+3
-4Ах+(2А-2В)=5х+3

-4А=5

2А-2В=3

А=-5/4

B= - 11/4

y_(част)=(-5/4)x^2-(11/4)x

О т в е т. y=y_(одн.)+y_(част)=

= [b]С_(1)e^(0)+C_(2)e^(2x)+(-5/4)x^2-(11/4)x[/b]

Вопрос к решению?
Нашли ошибку?

Добавил leydi09, просмотры: ☺ 70 ⌚ 2019-03-24 23:58:20. математика 1k класс

Решения пользователей

Лучший ответ к заданию выводится как основной
Хочешь предложить свое решение? Войди и сделай это!

Написать комментарий

Последние решения

Задача 14

Дано:

t = 5 мкс = 5*10^(-6) с
q = 8*10^(-5)

Решение:

I = q/t = 16 А
[удалить]
✎ к задаче 38650
0,1 м/с^2

μmg=F
[удалить]
✎ к задаче 38649
(прикреплено изображение) [удалить]
✎ к задаче 38639
(прикреплено изображение) [удалить]
✎ к задаче 38644
https://youtu.be/TCYxxYO_5ag
поставьте лайк)
[удалить]
✎ к задаче 38497