Задать свой вопрос   *более 50 000 пользователей получили ответ на «Решим всё»

Задача 34841 ...

Условие

sin2(7π/2+x)–sin2x=0

математика 10-11 класс 932

Все решения

По формулам приведения:
sin((7π/2)+x)= – cosx
sin2((7π/2)+x)=cos2x

sin2x=2sinx·cosx– формула синуса двойного угла

сos2x–2sinx·cosx=0
cosx·(cosx–2sinx)=0

cosx= 0 или сosx–2sinx=0

cosx=0x=(π/2)+πk, k ∈ Z

cosx–2sinx=0 ⇒ tgx=1/2 ⇒ x=arctg(1/2)+πn, n ∈ Z

О т в е т. (π/2)+πk, arctg(1/2)+πn, k, n ∈ Z

Обсуждения

Написать комментарий

Категория

Меню

Присоединяйся в ВК