=(1/2)cos4x+(1/2)cos2x
sin2x·cosx·cos3x= (1/2)sin2x·cos4x+(1/2)sin2x·cos2x
формула sinα ·cosβ=(1/2)sin(α+β)+(1/2)sin(α – β)
sin2x·cosx·cos3x= (1/2)·sin2x·cos4x+(1/2)sin2x·cos2x=
(1/2)·(1/2)·sin(2x+4x)+ (1/2)·(1/2)·sin(2x–4x)+(1/4)2·sin2x·cos2x=
=(1/4)·sin6x–(1/4)·sin2x+(1/4)·sin4x
Интеграл от суммы равен сумме интегралов:
∫ sin2x·cosx·cos3x dx= ∫ (1/4)·sin6xdx– ∫(1/4)·sin2xdx + ∫(1/4)·sin4xdx=
= (1/24)·cos6x – (1/8)·cos2x +(1/16)·(–cos4x) + C=
= (1/24)·cos6x – (1/8)·cos2x –(1/16)·cos4x + C – о т в е т.