Ay(x)=y(x+1)–y(x–1)=
=C1·ex+1+C2(x+1)·ex+1+C3(x+1)2·ex+1)–
–C1·ex–1–C2(x–1)·ex–1–C3(x–1)2·ex–1)=
=e·C1ex+e·C2xex+e·C2ex+
+e·C3x2ex+2e·C3xex+eC3ex–
–(1/e)C1ex–(1/e)C2xe(x)+(1/e)C2ex –
–(1/e(C3x2ex+(2/e)C3xex – (1/e)C3ex=
=(eC1+eC2+eC3–(1/e)C1+(1/e)C2–(1/e)C3)·ex+
+(eC2+2eC3–(1/e)C2+(2/e)C3)· x·ex +
+(eC3 – (1/e) C3)·x2ex