2cos3x–cos2x+2cosx–1=0 2pi 7pi/2
сos2x·(2cosx–1)+(2cosx–1)=0 (2cosx–1)·(cos2x+1)=0 2cosx–1=0 cosx=1/2 x= ± (π/3) +2πn, n ∈ Z (π/3) +2π=(7π/3)∈ [2π; 7π/2]