Задать свой вопрос   *более 50 000 пользователей получили ответ на «Решим всё»

Задача 32085 Найти координаты точки пересечения...

Условие

Найти координаты точки пересечения плоскости, про- ходящей через точки А = (−2;1;−2), В = (2;−1;−4), С = (−8;5;1) с прямой, проходящей через точки D = (30;−19;−21), Е = (6;−3;−5).


Найти координаты точки, симметричной точке А = (4,2,−8) относительно плоскости, заданной уравнением −2·х+1·у−3·z−4=0.


Найти координаты проекции точки A = (4,−5,3) на прямую, проходящую через точки В = (−1,−3,3) и С = (−5,0,4).

математика ВУЗ 1080

Решение

2.
Составим уравнение прямой, проходящей через точку А и перпендикулярной плоскости
При этом нормальный вектор плоскости vector{n}=(-2;1;-3) является направляющим вектором прямой.
(х-4)/(-2)=(y-2)/1=(z+8)/(-3)
Перейдем от этого уравнения к параметрическому:
(х-4)/(-2)=(y-2)/1=(z+8)/(-3) = t ⇒
x=-2t+4
y=t+2
z=-3t-8

Найдем координаты точки пересечения прямой и плоскости.
Подставим параметрические уравнения прямой в уравнение плоскости

4*(-2t+4)+(t+2)-3*(-3t-8)-4=0
t=-1
M(6;1;-5) - проекция точки А на плоскость.
По свойству симметричных точек, АМ=МА_(1)

Поэтому
х_(M)=(x_(A)+x_(A_(1)))/2 ⇒ x_(A_(1))=8
y_(M)=(y_(A)+y_(A_(1)))/2 ⇒ y_(A_(1))=0
z_(M)=(z_(A)+z_(A_(1)))/2 ⇒ z_(A_(1))=-2

О т в е т. (8;0;-2)

1.

Написать комментарий

Категория

Меню

Присоединяйся в ВК