✎ Задать свой вопрос   *более 30 000 пользователей получили ответ на «Решим всё»

Задача 31985 Проверить ряд на

УСЛОВИЕ:

Проверить ряд на сходимость
1+1*2/1*3+1*2*3/1*3*5+...

Добавил namjoon, просмотры: ☺ 116 ⌚ 2018-12-16 14:20:33. математика 2k класс

Решения пользователелей

Хочешь предложить свое решение? Войди и сделай это!

РЕШЕНИЕ ОТ sova

a_(n)=n!/(2n-1)!!
a_(n+1)=(n+1)!/(2n+1)!!

(2n+1)!!=1*3*5*...*(2n-1)*(2n+1)=(2n-1)!! *(2n+1)

(n+1)!=n!8(n+1)

Признак Даламбера

lim_(n→∞)(a_(n+1))/(a_(n))=lim_(n→∞)(n+1)/(2n+1)=1/2 < 1
По признаку Даламбера сходится.

Вопрос к решению?
Нашли ошибку?

Написать комментарий

Последние решения
(прикреплено изображение) [удалить]
✎ к задаче 34821
(прикреплено изображение) [удалить]
✎ к задаче 34819
(прикреплено изображение) [удалить]
✎ к задаче 34829
(прикреплено изображение) [удалить]
✎ к задаче 34827
f(x)=e^(x)
f`(x)=e^(x)


L= ∫ ^(1)_(0)sqrt(1+(e^(x))^2) dx= ∫ ^(1)_(0)sqrt(1+e^(2x)) dx=

замена
sqrt(1+e^(2x))=t
1+e^(2x)=t^2
e^(2x)=t^2-1

2x=ln(t^2-1)
x=(1/2)*ln(t^2-1)
dx=(1/2) *(1/(t^2-1))* (t^2-1)`dt

dx=tdt /(t^2-1)

Вычисляю неопределенный интеграл, чтоб не связываться со сменой пределов интегрирования

∫ sqrt(1+e^(2x)) dx= ∫ t* tdt/(t^2-1)= ∫ (t^2-1+1)dt/(t^2-1)=

= ∫ (1 + 1/(t^2-1))dt

= t + (1/2) ln|(t-1)/(t+1)|+C= sqrt(1+e^(2x)) + (1/2)* ln |(sqrt(1+e^(2x))-1)/(sqrt(1+e^(2x))+1)|+C

∫ ^(b)_(a)f(x)dx=F(b)-F(a)

О т в е т. sqrt(1+e^(2)) + (1/2)* ln |(sqrt(1+e^(2))-1)/(sqrt(1+e^(2))+1)|-

sqrt(1+e^(0)) + (1/2)* ln |(sqrt(1+e^(0))-1)/(sqrt(1+e^(0))+1)|
[удалить]
✎ к задаче 34824