2.∫(от 0 до π) sin x/4 dx
=(1/3)–4·(1/2)+4 – (–8/3)+4·(4/2)–4·(–2)=
=3–2+4+8+8=21
или
∫1–2(x2–4x+4) dx= ∫1–2(x–2)2 d(x–2)=((x–2)3/3)|1–2=
=(–1/3)–(–4)3/3=63/3=21
2.∫π0 sin (x/4) dx=4· ∫π0 sin (x/4) d(x/4)=
=4·(– cos(x/4))|π0= 4·(–cos(π/4)+cos0)= 4·((–√2/2) + 1)=
=–2√2 + 4