tg25x=sin25x/cos25x=(1–cos25x)/cos25x=(1/cos25x) – 1
∫ tg25x dx= ∫ ((1/cos25x) – 1)dx = (1/5)tg(5x)– x + C
2.
5sin2x–3cos2x+4·(sin2x+cos2x)=9sin2x+cos2x
= ∫ dx/(9sin2x+cos2x)=(1/9) ∫ 1/(tg2x+(1/9)) · dx/(cos2x)=
[tgx=t; dx/cos2x=dt]
=(1/9) ∫ dt/(t2+(1/9))=(cм. 13) (1/9) · 1/(1/3) atctg t/(1/3) + C=
=(1/3) arctg(3tgx)+C
3.
= ∫ dx/(2cos2x–sin2x)=∫ 1/(2–tg2x) · dx/(cos2x)=
[tgx=t; dx/cos2x=dt]
= ∫ dt/(2– t2)= – ∫ dt/( t2– 2) = ( см. 10)
=(1/2√2)ln|(t–√2)/(t+√2)| + C=
=(1/2√2)ln|(tgx–√2)/(tgx+√2)| + C