8. (cos4x + 1)(sin2x – 1) = 0
cos((x/2)–(π/12))=0
(x/2) – (π/12)=(π/2)+πn, n ∈ Z
(x/2) = (π/2) +(π/12) +πn, n ∈ Z
(x/2) = (7π/12) +πn, n ∈ Z
x= (7π/6) +2πn, n ∈ Z
ИЛИ
sin(x–(π/3))+1 = 0
sin(x–(π/3)) = –1
x–(π/3)= (–π/2) +2πm, m ∈ Z
x=(–π/2) +(π/3) +2πm, m ∈ Z
x=(–π/6) +2πm, m ∈ Z
О т в е т.(–π/6) +2πm; (7π/6) +2πn, m, n ∈ Z
8,
cos4x+1=0
cos4x=–1
4x= (–π) +2πm, m ∈ Z
x=(–π/4) +(π/2)m, m ∈ Z
ИЛИ
sin2x–1=0
sin2x=1
2x=(π/2) +2πn, n ∈ Z
x=(π/4) +πn, n ∈ Z
О т в е т. (–π/4) +(π/2)m, m ∈ Z ( второй ответ входит в первый при
m=2n+1)