4. [m]\frac{2sinx+\sqrt{3}}{2cosx+1} =0[/m]
cos((x/4)+(π/6))=√3/4
(x/4)+(π/6)= ± arccos(√3/4)+2πn, n∈ Z
(x/4)= ± arccos(√3/4) –(π/6) +2πn, n∈ Z
x= ±4·arccos(√3/4) –4·(π/6) +8πn, n∈ Z
x= ±4·arccos(√3/4) –(2π/3) +8πn, n∈ Z
4.
{2sinx+√3=0 ⇒sinx=–√3/2
{2cosx+1 ≠ 0 ⇒ cosx ≠ –1/2
{x=(–1)k·arcsin((–√3)/2)+πk, k ∈ Z
{x ≠ ± arccos(–1/2)+2πn , n ∈ Z
{x=(–π/3)+2πm, m ∈ Z или x=(–2π/3)+2πm, m ∈ Z
{x ≠ (±2π/3)+2πn , n ∈ Z
О т в е т. (–π/3)+2πm, m ∈ Z