ЗАДАЧА 189 Основанием треугольной пирамиды SABC

УСЛОВИЕ:

Основанием треугольной пирамиды SABC является прямоугольный треугольник ABC с гипотенузой АВ = 4 и катетом АС = 2. Боковые ребра пирамиды образуют с высотой пирамиды равные углы 30°. Найдите объем пирамиды SABC

РЕШЕНИЕ:

Более [b]подробное решение[/b] этой же задаче смотрите по ссылке: [link=https://reshimvse.com/zadacha.php?id=22501]

Нам необходимо найти высоту пирамиды и площадь ее основания. Если в пирамиде боковые ребра равны, то вершина пирамиды лежит над центром окружности радиуса R, описанной около основания. Следовательно, h =R/tg(30)= Rsqrt(3), причем радиус окружности, описанной около прямоугольного треугольника, равен половине гипотенузы. Итак, h = 2sqrt(3), а для нахождения площади основания по теореме Пифагора найдем второй катет ВС = sqrt(16-4) = 2sqrt(3). В итоге объем пирамиды равен 4.
ВОПРОСЫ ПО РЕШЕНИЮ?
НАШЛИ ОШИБКУ?
отправить + регистрация в один клик
опубликовать + регистрация в один клик
Как вы поняли, что все боковые рёбра равны? Потому-что они образуют один угол с высотой?
ответить
опубликовать + регистрация в один клик
Показать имеющиеся вопросы (1)

ОТВЕТ:

4

Нужна помощь?

Опубликовать

Готовься с нами!

Готовишься к ЕГЭ по Математике? А почему не с нами?
Начать подготовку

Добавил slava191 , просмотры: ☺ 2814 ⌚ 05.01.2014. математика 10-11 класс
КОД ВСТАВКИ

РЕШЕНИЯ ПОЛЬЗОВАТЕЛЕЙ
Написать своё решение

Только зарегистрированные пользователи могут писать свои решения.
Увы, но свой вариант решения никто не написал... Будь первым!

НАПИСАТЬ КОММЕНТАРИЙ

Мы ВКонтакте
Последние решения

SOVA ✎ (x-5-x)*(x-5+x)=3 -5*(2x-5)=3 2x-5=-3/5 2x=5-(3/5) 2x=22/5 x=11/5 О т в е т. 11/5 к задаче 26641

SOVA ✎ Если прямая у=k_(1)x+b_(1) перпендикулярна прямой у=k_(2)x+b_(2), то k_(1)*k_(2)= - 1 Перепишем уравнение прямой x–20y+5=0 в виде y=(1/20)x+(5/20) k_(1)=1/20 k_(2)=-20 Угловой коэффициент касательной k( касательной) = - 20 Геометрический смысл производной в точке: f`(x_(o)=k(касательной) f`(x)=(-3x^2+4x+7)`=-6x+4 f`(x_(o))=-6x_(o)+4 -6x_(o)+4=-20 -6x_(o)=-24 x_(o)=4 y_(o)=-3*4^2+4*4+7=-48+16+7=-25 О т в е т. (4;-25) к задаче 26643

SOVA ✎ ОДЗ: {8x^2+24x-16 > 0 ⇒ 8*(x^2+3x-2) > 0 ⇒ D=17;x =(-3 ±√17)/2 {x^4+6x^3+9x^2 > 0 ⇒ x^2(x^2+6x+9) > 0 ⇒ x^2*(x+3)^2 > 0⇒x≠ 0 и х≠ -3 {x^2+3x-10 ≠0⇒ D= 49; x≠ -5 и х≠ 2 x^2+3x-2 > 0 D=9-4*(-2)=17 x_(1)=(-3-sqrt(17))/2 или x_(2)=(-3+sqrt(17))/2 ОДЗ (- бесконечность ;-5)U(-5;(-3-sqrt(17))/2)U((-3+sqrt(17))/2;2)U(2;+ бесконечность ) log_(0,5)(8x^2+24x-16)=log_(2)(8*(x^2+3x-2))/log_(2)0,5= =-log_(2)8(x^2+3x-2) Тогда log_(0,5)(8x^2+24x-16)+log_(2)(x^4+6x^3+9x^2)= =-log_(2)(8*(x^2+3x-2))+log_(2)x^2(x+3)^2= =log_(2)(x^2*(x+3)^2/(8*(x^2+3x-2)))= =log_(2)(x*(x+3))^2/(8*(x^2+3x-2)= =log_(2)(x^2+3x)^2/(8*(x^2+3x-2)) Неравенство принимает вид: (log_(2)(x^2+3x)^2/(8*(x^2+3x-2)))/(x^2+3x-10) больше или равно 0 Замена переменной x^2+3x=t (log_(2)t^2/(8t-16))/(t-10) больше или равно 0 Неравенство равносильно двум системам 1) {log_(2)(t^2)/(8t-16) больше или равно 0 {x^2+3x-10 > 0 или 2) {log_(2)(t^2)/(8t-16) меньше или равно 0 {x^2+3x-10 < 0 Решаем первое неравенство: {log_(2)(t^2)/(8t-16) больше или равно 0 (2-1)*((t^2/(8t-16))-1)больше или равно 0 (t^2-8t+16)/(8t-16) больше или равно 0 так как t^2-8t+16 > 0 при любом t ⇒ 8t-16 > 0 ⇒ t > 2 ⇒ x^2+3x-2 > 0 1) {x^2+3x-2 > 0 ( см. ОДЗ) { D=49 x∈ (-∞; -5)U(2;+∞) 2) {(x^2+3x-2 < 0 - противоречит ОДЗ {x∈ (-5;2) Cистема не имеет решений С учетом ОДЗ О т в е т. ( (-∞; -5)U(2;+∞) к задаче 26636

u821511235 ✎ к задаче 26638

SOVA ✎ y(0)=-3 - 3 = (0^3/6)-sin0+C_(1)0+C_(2) ⇒ С_(2) = - 3 y`= (x^2/2)-cosx + C_(1) y`(0)=0 0=(0/2)-cos0+C_(1) C_(1)=1 О т в е т. С_(1)=1; С_(2)=-3 к задаче 26617