по формуле двойного угла sin2x=2sinxcosx, тогда
уравнение примет вид:
2sinxcos2x–6sinxсosx-2sinx=0;
2sinx(cos2x-3cosx-1)=0
1) sinx=0 ⇒ x=πk, k∈Z.
или
2)cos2x-3cosx-1=0
По формуле двойного угла
cos2x=2cos²x-1 и уравнение примет вид
2cos²x-3cosx-2=0
D=9+16=25
корни уравнения
(3-5)/4=-1/ 2 и (3+5)/4=2
cosx=-1/2 или сosx=2 - уравнение не имеет корней
х=±(arccos(-1/2))+2πn, n∈Z;
x=±(π-(arccos1/2))+2πn, n∈Z;
x=±(π-(π/3))+2πn, n∈Z;
x=±(2π/3)+2πn, n∈Z.
О т в е т. x=πk; ±(2π/3)+2πn; k,n∈Z.