✎ Задать свой вопрос   *более 30 000 пользователей получили ответ на «Решим всё»

Задача 925 Кусок льда, имеющий температуру 0

УСЛОВИЕ:

Кусок льда, имеющий температуру 0 градусов Цельсия, помещен в калориметр с электронагревателем. Чтобы превратить этот лед в воду с температурой 12 градусов Цельсия, требуется количество теплоты 80 кДж. Какая температура установится внутри калориметра, если лед получит от нагревателя количество теплоты 60 кДж? Теплоемкостью калориметра и теплообменом с внешней средой пренебречь.

РЕШЕНИЕ:

80 000=mл+mc12
60 000=mл+mctx
tx=9-19,6<0 значит не весь лед растает

Вопрос к решению?
Нашли ошибку?
Показать имеющиеся вопросы (1)

ОТВЕТ:

0 градусов Цельсия

Добавил slava191, просмотры: ☺ 13186 ⌚ 12.04.2014. физика 10-11 класс

Решения пользователей

Увы, но свой вариант решения никто не написал... Будь первым!
Хочешь предложить свое решение? Войди и сделай это!

Написать комментарий

Последние решения
d^2=12^2+32^2=144+1024=1168

d=sqrt(1168)

L=12d=12*sqrt(1168) ≈ 410,11 cм
(прикреплено изображение)
✎ к задаче 51961
рабочая формула:
f(x_(0)+ Δx; y_(0) + Δy) ≈ f(x_(0);y_(0))+d[f(x_(0);y_(0))]
х0=4; Δх= - 0,04
y0=1; Δy=0,03
вычислим значение в точке М0:
f(4; 1) =16+3*4*1-6*1=22
Дифференциал в точке (4;1)
d{f(4;1)}=f’_(x)* Δx+f’_(y)* Δy
f’_(x)=(X^2+3xy-6y)’_(x)= 2x+3y =8+3=11
f’_(y)=(X^2+3xy-6y)’_(y)= 3x – 6 = 12-6= 6
Полный дифференциал в точке d{f(4;1)}= 11*(-0,04)+6*0,03=-0,26
Приближенное значение равно f(3,96; 1,03) = 22 – 0,26 = 21,74
✎ к задаче 51954
Чтобы дойти до угла нужно 3 м, останется 7,5-3=4,5 (м).
Затем она должна пойти от точки А (угол дома) до мяча -точка В.
Это гипотенуза прямоугольного треугольника . Ее длина по т. Пифагора АВ=√( 1²+4²)=√17.
Т.к. =√20,25=4,5 , а √17<√20,25 , то длины веревки хватит .
PS . Хотя если учесть длину морды собаки, длину лап собаки, то пройдя по периметру коробки И остановившись прямо у стены -лапой она этот мячик достанет ( жизненный опыт)
Ответ .
1)Самый короткий путь от закрепления веревки до игрушки составляет (3+√17) м. ;
достанет .
2)Второе, какая длина пути (3+√17) м. ;
(прикреплено изображение)
✎ к задаче 51943
Вычислить ∫ sinxdx/(1+sinx)
РЕШЕНИЕ:
Преобразуем подынтегральную функцию:
sinx/(1+sinx)=sinx(1-sinx)/(1+sinx(1-sinx)=sinx(1-sinx)/cos^2x=
=sinx/cos^2(x)-sin^2(x)/cos^2(x)=sinx/cos^2(x)-tg^2(x)=sinx/cos^2(x)-
-1/cos^2(x)+1. Отсюда
∫ sinxdx/(1+sinx)= ∫ sinxdx/cos^2(x)- ∫ dx/cos^2(x)+ ∫ dx=1/cosx-tgx+x+C
✎ к задаче 51953
[i]Универсальная подстановка[/i]

tg\frac{x}{2}=t ⇒ dx=\frac{2}{1+t^2}dt; sinx=\frac{2t}{1+t^2}

∫ \frac{sinx}{1+sinx}dx=4 ∫ \frac{t}{(t+1)^2\cdot (1+t^2)}dt

Раскладываем дробь [i]на простейшие[/i] методом неопределенных коэффициентов:

\frac{t}{(t+1)^2\cdot (1+t^2)}=\frac{A}{t+1}+\frac{B}{(t+1)^2}+\frac{Mt+N}{t^2+1}


t=A*(t+1)*(t^2+1)+B*(t^2+1)+(Mt+N)*(t+1)^2

комбинируем два способа:

Метод частных значений:
при
t=-1

-1=2B ⇒ [b]B=-1/2[/b]

равенство двух многочленов

t=At^3+At^2+At+A+Bt^2+B+Mt^3+2Mt^2+Mt+Nt^2+2Nt+N


A+M=0 ⇒ A=-M
A+B+2M+N=0 ⇒ -M-(1/2)+2M+N=0 ⇒ M+N=1/2
A+M+2N=1 ⇒ -M+M+2N=-1 ⇒ [b]N=-1/2[/b]
A+B+N=0 ⇒ A-(1/2)-(1/2)=0 ⇒[b] A=1[/b]


[b]M=-1[/b]


∫ \frac{sinx}{1+sinx}dx=4 ∫(\frac{1}{t+1}-\frac{\frac{1}{2}}{(t+1)^2}-\frac{t+\frac{1}{2}}{t^2+1})dt=

=4 ∫(\frac{1}{t+1}-\frac{\frac{1}{2}}{(t+1)^2}-\frac{1}{2}\frac{2t}{t^2+1}+\frac{1}{2}\frac{dt}{t^2+1})dt=

=4(ln|t+1|+\frac{1}{2}\cdot \frac{1}{t}-\frac{1}{2}ln|t^2+1|+\frac{1}{2}\cdot arctgt)+C

где t=tg\frac{x}{2}
✎ к задаче 51953