✎ Задать свой вопрос   *более 30 000 пользователей получили ответ на «Решим всё»

Задача 883 решите уравнение 16cos^2x-24cos^2x+9=0

УСЛОВИЕ:

решите уравнение 16cos^2x-24cos^2x+9=0

Добавил Гость, просмотры: ☺ 4235 ⌚ 06.04.2014. математика 10-11 класс

Решения пользователелей

Хочешь предложить свое решение? Войди и сделай это!

РЕШЕНИЕ ОТ slava191

-8cos^2x=-9
cos^2x=9/8
1+cos2x=18/8
cos2x=10/8
10/8 больше 1 значит нет решение, если в условии нет ошибок, то так!

Вопрос к решению?
Нашли ошибку?

Написать комментарий

Последнии решения
vector{a}×vector{b}=(-2;1;7)

Векторы коллинеарны ⇒ их координаты пропорциональны

-2: α =1:3=7: β ⇒
-2: α =1:3

α =-6


1:3=7: β

β =21
(прикреплено изображение) [удалить]
✎ к задаче 31067
Составим уравнение плоскости, проходящей через три точки A, B, C
(прикреплено изображение) [удалить]
✎ к задаче 31068
vector{F}=(-4;-4;-4)
vector{AB}=(12-11;-10-(-9);3-5) =(1;-1-2)- плечо силы

vector{M}= vector{F}× vector{AB}
(прикреплено изображение) [удалить]
✎ к задаче 31065
Δ KFM подобен Δ DFM ( KM || DA)

Из подобия следует пропорциональность сторон

KM: DA= FK: FD

KM:15 =3 : 5

КМ=9 (см)
(прикреплено изображение) [удалить]
✎ к задаче 31066
vector{BC}=(2/3)vector{a}+(4/3)vector{b}

Решение.
По правилу треугольника
vector{АК}+vector{КC}=vector{AC}
и
vector{BM}+vector{MC}=vector{BC} ⇒ (т.к. vector{MC}=(1/2)vector{АC}

vector{BC}=vector{b}+(1/2)*vector{AC}=

=vector{b}+(1/2)vector{АК}+(1/2)vector{КC}=

=vector{b}+(1/2)vector{a}+(1/2)*(1/2) vector{BC}.

Итак,
vector{BC}=vector{b}+(1/2)vector{a}+(1/2)*(1/2) vector{BC}.

(3/4)vector{BC}=vector{b}+(1/2)vector{a}

vector{BC}=(4/3)*vector{b}+(4/3)*(1/2)vector{a}
[удалить]
✎ к задаче 31063