Задать свой вопрос   *более 50 000 пользователей получили ответ на «Решим всё»

Задача 8618 Две окружности касаются внешним образом...

Условие

Две окружности касаются внешним образом в точке К. Прямая касается первой окружности в точке А, а второй – в точке В. Прямая ВК пересекает первую окружность в точке D, прямая АК пересекает вторую окружность в точке С.

а) Докажите, что прямые AD и BC параллельны.
б) Найдите площадь треугольника DКС, если известно, что радиусы окружностей равны 4 и 9.

математика 10-11 класс 8911

Решение

Окружность с центром О₁ касается прямой в точке А, радиус окружности О₁А=О₁К.
Окружность с центром О₂ касается прямой в точке В, радиус окружности О₂В=О₂К.
Через точку К проведем общую касательную к 2 окружностям, которая пересекает АВ в точке Е.

а) Если к окружности из одной точки проведены две касательных, то длины отрезков касательных от этой точки до точек касания с окружностью равны.
Значит АЕ=ЕК и ВЕ=ЕК, тогда АЕ=ВЕ.
Получается, что ЕК – медиана ΔАВК и ЕК=АВ/2, значит ΔАВК прямоугольный (угол АКВ – прямой)
Следовательно, прямые ВД и АС пересекаются под прямым углом, значит вписанные <АКД=<ВКС=90°. А т.к. вписанный угол является прямым углом, тогда и только тогда, когда он опирается на диаметр, то значит АД и ВС – это диаметры окружностей.
Касательная перпендикулярна к радиусу окружности, проведённому в точку касания, тогда АД ⊥АВ, ВС⊥АВ.
Значит АД || ВС (две прямые, перпендикулярные третьей прямой, параллельны), ч.т.д.

б) По условию радиус окружности О₁А=О₁К=4, а радиус окружности О₂В=О₂К=9.
Диаметры АД=8, ВС=18
Прямоугольные ΔАКД и ΔСКВ подобны по острому углу (<ДАК=<ВСК как накрест лежащие при пересечении параллельных прямых АД и ВС секущей АС).
Значит АК/КС=ДК/КВ=АД/ВС=8/18=4/9
ДК/КВ=АД/ВС=8/18=4/9
КВ=(9ДК)/4
Из прямоугольного ΔДАВ, в котором АК – высота из прямого угла на гипотенузу ВД:
АК²=ДК·КВ=ДК·(9ДК)/4=(9ДК²)/4
АК=(3ДК)/2
Из прямоугольного ΔДАК:
АД²=ДК²+АК²
АД²=ДК²+9ДК²/4=13ДК²/4
ДК=2АД/√13==2·8/√13=16/√13
АК=(3·16/√13)/2=24/√13
КС==(9AК)/4==(9·24/√13)/4=54/√13
Площадь Sдкc=1/2·КД·КС=1/2·16/√13· 54/√13=432/13
Ответ: 432/13


Ответ: 432/13

Обсуждения

Написать комментарий

Меню

Присоединяйся в ВК