Задать свой вопрос   *более 50 000 пользователей получили ответ на «Решим всё»

Задача 8483 а) Решите уравнение...

Условие

а) Решите уравнение √2sin2x–4sinx+5=√sinx+3
б) Найдите все корни этого уравнения, принадлежащие отрезку [3π;9π/2]

математика 10-11 класс 5102

Решение

a)√2sin2x–4sinx+5=√sinx+3
ОДЗ: 1)2sin2x–4sinx+5⩾0
Замена sinx=m, –1⩽m⩽1
2m2–4m+5⩾0
2m2–4m+5=0
D=16–40=–24, =>корней нет
функция y=2m2–4m+5 положительна на всей области определения(а>0, ветви направлены вверх)
Учитывая ограничения для m, получим:
–1⩽sinx⩽1
–п/2+2пn⩽x⩽п/2+2пk, k,nЄZ
2)sinx+3⩾0
так как –1⩽sinx⩽1, то
2⩽sinx+3⩽4
значит, х может принимать любые значения

Возведем обе части уравнения в квадрат:
2sin2x–4sinx+5=sinx+3
2sin2x–4sinx+5–sinx–3=0
2sin2x–5sinx+2=0
Замена: sinx=t, –1⩽t⩽1
2t2–5t+2=0
D=25–16=9
t1=(5+3)/4=2 не удовлетворяет условию
t2=(5–3)/4=1/2
sinx=1/2
x1=п/6+2пn, nЄZ
x2=5п/6+2пk, kЄZ
Ответ: (–1)^m·п/6+пm, mЄZ

б)3п⩽п/6+2пn⩽9п/2
17п/6⩽2пn⩽26п/6
17/12⩽n⩽26/12
n=2, x=п/6+4п=25п/6

3п⩽5п/6+2пk⩽9п/2
13п/6⩽2пn⩽22п/6
13/12⩽n⩽22/12
n=∅


Ответ: a)(-1)^m*п/6+пm, mЄZ, б)25п/6

Обсуждения

Написать комментарий

Меню

Присоединяйся в ВК