✎ Задать свой вопрос   *более 30 000 пользователей получили ответ на «Решим всё»

Задача 816 На гладком горизонтальном столе

УСЛОВИЕ:

На гладком горизонтальном столе находится цилиндрический сосуд длиной L, разделённый перегородкой на две равные части (см. рисунок). В одной части сосуда находится кислород, а в другой – азот. Давление азота вдвое больше давления кислорода, а температуры одинаковы. В перегородке открывается шторка, в результате чего газы в сосуде перемешиваются. На какое расстояние при этом сдвинется сосуд? Массой сосуда и перегородки пренебречь. Процесс считать изотермическим

Добавил Гость, просмотры: ☺ 1611 ⌚ 23.03.2014. физика 10-11 класс

Решения пользователелей

Хочешь предложить свое решение? Войди и сделай это!
На нашем сайте такое бывает редко, но решение к данной задаче еще никто не написал.

Что Вы можете сделать?

  1. Напишите решение или хотя бы свои догадки первым.
  2. Заказать эту задачу у партнеров сайта: на этой странице.
  3. Найдите похожую задачу. Используйте поиск.
Увы, но свой вариант решения никто не написал... Будь первым!

Написать комментарий

Последние решения
(прикреплено изображение) [удалить]
✎ к задаче 34759
1+2+3+4+5=15
15*5=75
Сумма всех чисел таблицы 75
75:3=25 в каждой области.

О т в е т. cм рисунок
(прикреплено изображение) [удалить]
✎ к задаче 34733
Проведем высоту SO - пирамиды SАВСD
O- точка пересечения диагоналей квадрата
H=SO
V_(пирамиды SABCD)= [b](1/3)*S(квадрата АВСD) * H[/b]

EK- высота пирамиды EABC
ЕК- средняя линия Δ SBO
EK=H/2

V_(пирамиды EABC)=(1/3)*S( Δ АВС) * H/2

S( Δ АВС) =(1/2)S(квадрата АВСD)

V_(пирамиды EABC)=(1/3)*(1/2)S(квадрата АВСD) * H/2=
=(1/4)* [b] (1/3)*S(квадрата АВСD) * H[/b]= (1/4)V_(пирамиды SABCD)

Значит,
V _(тела)=V_(пирамиды SABCD)-V_(пирамиды EABC)=
=V_(пирамиды SABCD)- (1/4)V_(пирамиды SABCD)=

=(3/4)*V_(пирамиды SABCD)=(3/4)*34=51/2= [b]25,5[/b]

О т в е т. [b]25,5
[/b]
(прикреплено изображение) [удалить]
✎ к задаче 34752
СС_(1)||BB_(1)
∠ AC_(1)C - угол между CC_(1) и AC_(1), а значит и между
BB_(1) и AC_(1)
Находим его из прямоугольного равнобедренного треугольника
ACC_(1)
АС=СС_(1)=17

[b]∠ AC_(1)C=45 градусов.[/b]
(прикреплено изображение) [удалить]
✎ к задаче 34753
ОДЗ:
{x+3>0 ⇒ x > -3
{x+3 ≠ 1 ⇒ x ≠ -2
{x+2>0 ⇒ x > -2
{(x-1)^2>0 ⇒ x ≠ 1

(-2;1) U (1;+ ∞ )

Применяем обобщенный метод интервалов.
Находим нули функции
f(x)=(x^2+3x+2)*log_(x+3)(x+2)*log_(3)(x-1)^2

x^2+3x+2=0
D=9-4*2=1
x_(1)=(-3-1)/2=-2; х_(2)=(-3+1)/2=-1
[b]x_(1)=-2; х_(2)=-1[/b]

-(2) __-__ [-1] __+__

log_(x+3)(x+2)=0

x+2=(x+3)^(0)
x+2=1
[b]x=-1[/b]

(-2) __-__ [-1] ___ + ____

log_(3)(x-1)^2=0
(x-1)^2=3^(0)
(x-1)^2=1
x-1=-1 или x-1=1
[b]x=0 или х=2[/b]

(2) __+__ [0] __-___ [2] _ +__

Отмечаем найденные корни на области определения

(-2) __+_ [-1] _+_ [0] _-_ (1) __-_ [2] ___+__

О т в е т. {-1}U[0;1)U(1;2]
[удалить]
✎ к задаче 34755